Search results for "strong solution"
showing 6 items of 6 documents
Some recent results on a singular p-laplacian equations
2022
Abstract A short account of some recent existence, multiplicity, and uniqueness results for singular p-Laplacian problems either in bounded domains or in the whole space is performed, with a special attention to the case of convective reactions. An extensive bibliography is also provided.
THE MINIMIZING TOTAL VARIATION FLOW WITH MEASURE INITIAL CONDITIONS
2004
In this paper we obtain existence and uniqueness of solutions for the Cauchy problem for the minimizing total variation flow when the initial condition is a Radon measure in ℝN. We study limit solutions obtained by weakly approximating the initial measure μ by functions in L1(ℝN). We are able to characterize limit solutions when the initial condition μ=h+μs, where h∈L1(ℝN)∩L∞(ℝN), and μs=αℋk⌊ S,α≥0,k is an integer and S is a k-dimensional manifold with bounded curvatures. In case k<N-1 we prove that the singular part of the solution does not move, it remains equal to μs for all t≥0. In particular, u(t)=δ0 when u(0)=δ0. In case k=N-1 we prove that the singular part of the limit solution …
Strong solutions to a parabolic equation with linear growth with respect to the gradient variable
2018
Abstract In this paper we prove existence and uniqueness of strong solutions to the homogeneous Neumann problem associated to a parabolic equation with linear growth with respect to the gradient variable. This equation is a generalization of the time-dependent minimal surface equation. Existence and regularity in time of the solution is proved by means of a suitable pseudoparabolic relaxed approximation of the equation and a passage to the limit.
On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids
2007
In this paper we discuss a system of partial differential equations describing the steady flow of an incompressible fluid and prove the existence of a strong solution under suitable assumptions on the data. In the 2D-case this solution turns out to be of class C^{1,\alpha}.
Sobolev estimates for optimal transport maps on Gaussian spaces
2012
We will study variations in Sobolev spaces of optimal transport maps with the standard Gaussian measure as the reference measure. Some dimension free inequalities will be obtained. As application, we construct solutions to Monge-Ampere equations in finite dimension, as well as on the Wiener space.
Some recent results on singular $ p $-Laplacian systems
2022
Some recent existence, multiplicity, and uniqueness results for singular p-Laplacian systems either in bounded domains or in the whole space are presented, with a special attention to the case of convective reactions. A extensive bibliography is also provided.